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Abstract For chaotic trajectories, when the system parameters are fixed, they are
generally confined in a bounded state space. In this paper, we propose an adaptive reg-
ularized particle filter (RPF), which makes the best of this inherent characteristic, for
identical synchronization of chaotic Colpitts circuits combating additive white Gaus-
sian noise (AWGN) channel distortion. This proposed filter incorporates RPF that
resamples from a continuous approximation of the posterior density to avoid sam-
ple impoverishment and then utilizes the revised Kullback–Leibler distance (KLD)
sampling to adaptively select the number of particles used. Compared with the exist-
ing particle filters (PFs) with fixed large number of particles, this proposed adaptive
RPF propagates less number of particles with similar performance and thus provides
a much more efficient solution for this problem.
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1 Introduction

Since the work of Pecora and Carroll on chaos synchronization [15], considerable in-
terest has been displayed in this research topic for its potential applications in radar,
signal encryption, communications, etc. [9, 18]. As one of the standard oscillators,
the synchronization of Colpitts circuit [8] is a hot research topic [2, 11, 17, 19, 23].
Both mathematical analysis and simulation results have confirmed that perfect syn-
chronization can be achieved under ideal synchronization conditions [11, 19], and it
was found that with minor parameter mismatch, chaos synchronization can still be
obtained and maintained [2, 23]. However, in chaos synchronization with an additive
white Gaussian noise (AWGN) channel, the traditional algorithms using the same
or partly the same circuit in the receiver as a response system show unacceptable
performance [17].

Recently, recursive Bayesian approaches used to construct a receiver posed an-
other way for this problem [5, 10, 20, 21, 24, 25], especially the particle filters (PFs)
that are the state-of-the-art solution to nonlinear and non-Gaussian problems [1, 16].
In 2006, Kurian and Puthusserypady investigated the unscented Kalman filter (UKF)
and PF for chaotic synchronization, where the Lorenz and Mackey–Glass (MG) sys-
tems as well as the Ikeda map (IM) were used for the numerical evaluation [10]. In
2008, Shi et al. studied the PF-based synchronization of chaotic Colpitts circuits with
AWGN channel distortion [21], and further demonstrated experimentally the syn-
chronization of chaotic Chua’s circuit utilizing the PF-based algorithm [20]. In 2009,
application of PF to noisy synchronization in polynomial chaotic maps was investi-
gated and the results indicated that the PF outperformed all other Kalman structured
observers in the case of noisy channels [24, 25].

It is well known that a common problem with PFs is the degeneracy phenomenon,
where as time increases, only very few particles are substantial. Although resampling
can reduce the effects of degeneracy, it also introduces a practical problem known as
sample impoverishment. For the chaotic oscillation, since the uncertainty of process
model is generally very small, this problem is particularly serious. In [21], a rough-
ening scheme [4] was introduced after resampling to improve the diversity of par-
ticles, and simulation results showed that chaos synchronization of Colpitts circuits
can be achieved and maintained in an AWGN channel using the PF with the rough-
ening scheme. However, the constant tuning parameter in the roughening algorithm
is empirical and difficult to be determined appropriately. Too large a value would
blur the distribution, meanwhile too small a value would produce tight clusters of
points and the roughening is useless. Moreover, since the complexity of the probabil-
ity densities varies drastically over time, with a fixed number of particles one has to
choose large sample sets so as to get acceptable performance, and the computational
load is directly proportional to this number. To solve these problems, an adaptive
regularized particle filter (RPF)-based synchronization of chaotic Colpitts circuits is
proposed in this paper. Instead of resampling from a discrete approximation of the
posterior density, this proposed filter introduces RPF that resamples from the contin-
uous approximation and avoids the problem of loss of diversity among the particles.
Additionally, the proposed adaptive RPF incorporates the revised Kullback–Leibler
distance (KLD) sampling [22] to adaptively select the number of particles used. That
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Fig. 1 Synchronization of chaotic Colpitts circuits in an AWGN channel

is to say, it propagates small number of particles when the density is concentrated in a
small region of the state space and chooses large number of particles in cases of high
uncertainties. Thus it propagates less number of particles and becomes much more
efficient.

This paper is organized as follows. In Sect. 2, the problem formulation of the syn-
chronization of chaotic Colpitts circuits subjected to an AWGN channel is presented.
Section 3 describes the proposed adaptive RPF in considerable detail. The simulation
results of synchronization process, synchronization performance and number of par-
ticles used over AWGN channel are presented in Sect. 4, and Sect. 5 concludes the
paper.

2 Problem Formulation

The configuration of the synchronization of chaotic Colpitts circuits in an AWGN
channel is shown in Fig. 1.

For the chaotic Colpitts oscillator, its state equations are as follows:

⎧
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(1)

where f (.) is the driving-point characteristic of the nonlinear resistor of the bipolar
junction transistor (BJT) [13], described by

f (x) = Is

[
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− 1

]
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[
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, if x � VT . (2)
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In the Colpitts oscillator, this characteristic can be expressed as

IE = f (VBE) = f (−VC2) = IS exp

(

−VC2(t)

VT

)

. (3)

To get more information about the states of chaotic Colpitts circuits in the re-
ceiver, the sum of V 2

C1
(t) and V 2

C2
(t) is selected as the transmitted signal. After it

goes through the AWGN channel and reaches the receiver, it becomes

Varrived(t) = V 2
C1

(t) + V 2
C2

(t) + v(t), (4)

where v(t) is the zero mean white Gaussian noise induced by the AWGN channel.
In the receiver, the analog signal is firstly sampled by an analog–digital converter

(ADC) with time (sampling) interval T , and then the discrete-time signal is used as
the observation for the adaptive RPF. According to Eq. (1), the discrete state dynamics
for the adaptive RPF can be formulated as

xk = Φxk−1 + G, (5)

where

xk =
⎛

⎝
VC1(kT )

VC2(kT )

IL(kT )

⎞

⎠ , Φ =
⎛

⎝
1 0 T/C1
0 1 − T/(C2Re) T /C2

−T/L −T/L 1 − RT/L

⎞

⎠ ,

G =
⎛

⎝
−f (−VC2((k − 1)T ))T /C1

VeeT /(C2Re)

VCCT/L

⎞

⎠ .

And the measurement model is given by

zk = (
xk[1])2 + (

xk[2])2 + vk, (6)

where xk[i] denotes the ith element of the vector xk .
In numerical simulations, the parameters of the chaotic Colpitts oscillator are set

to be the same as those in [21]; that is, C1 = C2 = 237 nF, L = 2.1 mH, R = 74.5 �,
VCC = 5 V, Vee = −5 V, Re = 2000 �. The time interval T is 1 µs. With these
parameters, the transmitter exhibits chaotic oscillation. It has been shown that under
an ideal channel, perfect synchronization can be achieved using one-way coupling
linear error feedback synchronization scheme [17]. Unfortunately, it is very difficult
to achieve synchronization when the AWGN channel effect is exerted.

3 Adaptive Regularized Particle Filter Algorithm

Unlike the conventional analytical approximation methods, PFs base their operation
on representing the target’s posterior probability density function (PDF) of the state
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by a set of random particles {xj
k}Nj=1 with their associated weights {wj

k }Nj=1, where j

is the particle index and N is the number of particles used, i.e.,

p(xk|zk) = 1

Wk

N∑

j=1

w
j
k δ
(
xk − xj

k

)
, (7)

where Wk =∑N
j=1 w

j
k . In the implementation of PFs, there are three important oper-

ations:

(1) Sampling: generation of new particles xj
k ∼ q(xk|xj

k−1, z1:k) for j = 1, . . . ,N ,

where q(xk|xj

k−1, z1:k) is the importance density. The most popular choice is the

transitional prior q(xk|xj

k−1, zk) = p(xk|xj

k−1), which is also used in this paper.
(2) Weight calculation: computation of the particle weights

w
j
k = w

j

k−1

p(zk|xj
k )p(xj

k |xj

k−1)

q(xk|xj

k−1, z1:k)
(8)

followed by normalization w
j
k = w

j
k [∑N

j=1 w
j
k ]−1. Because the prior distribution

is adopted as importance distribution in this paper, the importance weights will
satisfy w

j
k = w

j

k−1p(zk|xj
k ), which reduces the complexity of the PFs.

(3) Resampling: drawing new particles {x̃j
k}Nj=1 from the above set of particles

{xj
k}Nj=1 based on the particle weights according to a resampling algorithm.

3.1 Regularized Particle Filter

Resampling is a method to reduce the degeneracy problem. The key idea is to discard
the particles with low normalized importance weights and multiply the particles with
high normalized importance weights to replace them. However, it in turn introduces
the problem of loss of diversity among the particles, especially when the uncertainty
of process model is small. This arises due to the fact that in the resampling step,
samples are drawn from a discrete distribution rather than a continuous one. A modi-
fied PF known as the RPF, which resamples from a continuous approximation of the
posterior density, was proposed as a potential solution to this problem [14]. Except
for the resampling step, the RPF is identical to the PF. The details of the RPF are
described in Table 1. For more details of discussion on the RPF, please refer to [14].

In Table 1, NT is the pre-specified threshold of the sample size and hopt is the
Kernel bandwidth.

3.2 Adaptive Selection of the Number of Particles Used

Most existing approaches to implement PFs use a fixed number of particles during
the entire state estimation process. It is highly inefficient in most situations, because
the complexity of the posterior probability densities varies drastically over time and
the complexity of PFs depends on the number of particles used for estimation. The
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Table 1 Regularized particle filter [14]
[{

xj∗
k

,w
j
k

}N
j=1

]
= RPF

[{
xj
k−1,w

j
k−1

}N
j=1, zk

]

• Sampling:

� for j = 1, . . . ,N

� draw xj
k

∼ q(xk |xj
k−1, z1:k)

� end for

• Weight calculation:

� Assign the particle a weight w
j
k

according to (8)

� Normalize:

� for j = 1, . . . ,N

� w
j
k

= w
j
k

[
N∑

j=1

w
j
k

]−1

� end for

• The effective sample size N̂eff calculating:

� N̂eff = 1
∑N

j=1(w
j
k
)2

• Resampling:

� if N̂eff < NT

� Calculate the empirical covariance matrix Sk of {xj
k
,w

j
k
}N
j=1

� Compute Dk such that DkDT
k

= Sk

�
[{{

xj
k
,w

j
k
,−}N

j=1

}]
= RESAMPLE

[{{
xj
k
,w

j
k

}N
j=1

}]

� for j = 1, . . . ,N

� Draw ξj ∼ K from the Epanechnikov kernel

� xj∗
k

= xj
k

+ hoptDkξj

� end for

� end if

likelihood-based adaptation [3] can be utilized to adaptively select the number of par-
ticles used, the idea of which is to use the sum of non-normalized importance weights
as a measure until the sum of the weights exceeds a pre-specified threshold. However,
the pre-specified threshold is empirical and difficult to be set appropriately. Further-
more, the criterion only considers the quality of the match between the proposed
and true distribution but ignores the other important factors, i.e., the complexity of
the true density [22]. In this section, an adaptive scheme, which utilizes the revised
KLD-Sampling [22] to adaptively select the size of sample sets, is incorporated to
increase the efficiency.

3.2.1 KLD-Sampling

Assume that the true posterior density is given by a discrete, piecewise constant dis-
tribution p = (p1,p2, . . . , pm) over partitioned state spaces (called bins), where m is
the number of bins. Let vector n = (n1, n2, . . . , nm) be the number of particles from
each bin. Then maximum likelihood estimate (MLE) of the density p using the n
samples can be given by p̂ = n/N . The KLD between the MLE and true posterior is
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given by

K(p̂,p) =
m∑

i=1

p̂i log

(
p̂i

pi

)

. (9)

Given pre-specified error threshold ε, the probability

Prob
{
K(p̂,p) < ε

}= 1 − δ (10)

holds if the total number of particles N meets the chi-square distribution

N = 1

2
χ2

m−1,1−δ. (11)

Using the Wilson–Hilferty transformation to approximate the quantiles of the
χ2

m−1,1−δ distribution, the bound given by the KLD-Sampling for the number of par-
ticles is:

N = 1

2ε
χ2

m−1,1−δ ≈ (m − 1)

2ε

{

1 − 2

9(m − 1)
+
√

2

9(m − 1)
z1−δ

}3

, (12)

where z1−δ is the upper 1 − δ quantile of the standard normal distribution and its
values are readily available in standard statistical tables.

3.2.2 Revised KLD-Sampling

It can be found that a key feature of the bound given by the KLD-Sampling is that
it does not require direct knowledge of the true posterior. It only requires knowl-
edge about the number of bins with support, which is suitable for the PF-based syn-
chronization algorithms for chaotic circuits, because when the system parameters are
fixed, the chaotic trajectories are generally confined in a bounded state space. How-
ever, there is a problem with the KLD-Sampling; that is, the derivation of the bound
has the implicit assumption that the samples come from the true distribution, whereas
the samples in PFs come from an importance function. Moreover, the quality of the
match between the true and the proposed distribution is one of the main elements
that determines the accuracy of the filter, and hence the suitable number of particles
required.

To fix this problem of the KLD-Sampling, the equivalent number of particles from
the importance and true densities is given by [22]

Nq = Np

Varq(x)

Varp(x)
, (13)

where Nq and Np are the numbers of particles coming from the importance and
the true distribution, respectively, Varq(x) = Eq((x − Ep(x))2w2

q) and Varp(x) =
Ep((x − Ep(x))2) are the variances of particles drawn from the importance and the

true distribution, respectively, Ep(x) =∑n
j=1 xjw

j
q/
∑n

j=1 w
j
q and wq = p(x)/q(x)

with the true distribution p(x) and the importance distribution q(x).
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If we assume that the weights are independent of x, the variances can be stated in
simpler terms as follows:

Varq(x) = Eq

((
x − Ep(x)

)2
w2

q

)≈ Eq

((
x − Ep(x)

)2) · Eq

(
w2

q

)

= Eq

((
x − Ep(x)

)2) · (Varq(wq) + Eq(wq)2)

= Eq

((
x − Ep(x)

)2) · (Varq(wq) + 1
)

(14)

and

Varp(x) = Ep

((
x − Ep(x)

)2)≈ Eq

(
wq

(
x − Ep(x)

)2)

= Eq(wq) · Eq

((
x − Ep(x)

)2)= Eq

((
x − Ep(x)

)2)
. (15)

Substituting (14) and (15) into (13), the bound given by the revised KLD-Sampling
in the case that the samples are drawn from an importance function is:

Nq = (
1 + Varq(wq)

) · Np (16)

which coincides with the result in [12, 22]. Considering the weights wk = wk−1 ×
p(zk |xk)p(xk |xk−1)

q(xk |xk−1,z1:k) ∝ wq inPFs, the adjustment factor 1 + Varq(wq) can be obtained as

follows:

1 + Varq(wq) = 1 + Varq(wk)/Eq(wk)
2

= Eq

(
w2

k

)/
Eq(wk)

2

= n ·
n∑

j=1

(
w

j
k

)2
/
(

n∑

j=1

w
j
k

)2

. (17)

Substituting (17) into (16), we can obtain

Nq = n ·
n∑

j=1

(
w

j
k

)2
/
(

n∑

j=1

w
j
k

)2

· (m − 1)

2ε

{

1 − 2

9(m − 1)
+
√

2

9(m − 1)
z1−δ

}3

.

(18)

It is found that as in the case of the KLD-Sampling, the bound given by the revised
KLD-Sampling can also be estimated incrementally as the particles and their weights
are available.

3.3 The Proposed Adaptive RPF

For chaotic oscillators, when the system parameters are fixed, the chaotic trajectories
are generally confined in a bounded state space Ω . Thus the samples outside the at-
tractor region make no contribution for the posterior probability density and we can
easily get the bin size for the revised KLD-Sampling. It is clear that the choice of
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the size of bins is a compromise. If the size of bins is relatively small, the number
of bins with support would be large and then more number of particles would be re-
quired. On the other hand, if the size of bins is too large, the number of bins with
support may be small and then the number of particles used may be insufficient. In
general, the scheme of setting the size of bins small and utilizing more number of
particles shows a better performance. In this paper, the bounded state space is aver-
agely partitioned into 10 × 10 × 10 bins for simplification of simulation. Considering
that the number of particles used is time-varying, resampling is applied at each time
index and the threshold-based resampling algorithm [6, 7] is utilized to adaptively
adjust the output number of particles in the resampling procedure. And to reduce the
computing cost of generating from the regularized measure, the Epanechnikov kernel
is replaced by the Gaussian kernel and the optimal bandwidth associated (when the

underlying density is Gaussian with unit covariance matrix) is hopt = A(K) ·N− 1
nx+4

with A(K) = (4/(nx + 2))
1

nx+4 , where nx is the dimension of the variable. For the
chaotic Colpitts circuits in this paper, nx = 3, and thus the optimal bandwidth is

hopt = (4/5)
1
7 · N− 1

7 . The details of the proposed adaptive RPF for synchronization
of chaotic Colpitts circuits over AWGN channel are described in Table 2.

In Table 2, �x s
k represents the substantial particle and �ws

k is the weight of the sub-
stantial particle. It can be observed from Table 2 that the proposed adaptive RPF
adaptively adjusts the sample size through the revised KLD-Sampling, and the out-
put number of particles in the resampling procedure is also adaptive by using the
threshold-based resampling algorithm [6, 7]. Therefore, the computational complex-
ity is reduced and the efficiency is improved.

4 Simulation and Discussion

In this section, we will show how synchronization is achieved and how the number of
particles used changes when the proposed adaptive RPF is employed as receiver. The
effects of different SNRs, different ADC sampling intervals on the synchronization
performance and the number of particles used are also investigated.

To evaluate the synchronization performance, we define the synchronization error
E and average attractor distance (AAD) D:

Ek =
√
(
ek[1])2 + (

ek[2])2 + (
ek[3])2, (19)

D = lim
kx→∞

∑kx

k=k0
Ek

kx − k0 + 1
, (20)

where ek[1] = x̂[1] − x[1], ek[2] = x̂[2] − x[2], ek[3] = x̂[3] − x[3], and k0 denotes
the time index when the transient parts of the signals have passed. The value of D

will be zero when the transmitter and receiver are in perfect identical synchronization
state. But if the synchronization performance is not very good, the variable D will be
non-zero, and a bigger value of D means a worse synchronization performance.



834 Circuits Syst Signal Process (2013) 32:825–841

Table 2 The proposed adaptive RPF

Input: bounds ε and δ, bin size �, maximum number of particles Nmax

• For k = 1,2, . . .

� (1) Initializing:

� n = 1, m = 0, r = 1, Nq = 0, Wk = 0, W2
k

= 0

� (2) Generating samples:

� (a) Sampling:

� if (k > 1) //Draw state from previous belief after resampling

	 if (n < s + 1)


 xn
k−1 =�x r

k−1

 wn

k−1 = �wr
k−1

	 else //Draw from a continuous approximation of the posterior


 draw ξ ∼ K from the Gaussian kernel


 xn
k−1 =�x r

k−1 + hoptDk−1ξ


 wn
k−1 = �wr

k−1
	 end if

	 r = mod(r, s) + 1 //Repeat sequentially

� end if

� Sample xn
k

∼ p(xk |xn
k−1) using xn

k−1
� (b) Weight computing:

� if xn
k

∈ bounded space Ω

	 wn
k

= wn
k−1p

(
zk |xn

k

)

� else

	 repeat sampling step

� end if

� Wk = Wk + wn
k

//Update normalization factor

� W2
k

= W2
k

+ (
wn

k

)2

� (c) Number of bins with support updating:

� if (xn
k

falls into empty b)

	 m = m + 1 //Update the number of bins

	 b = non-empty //Mark bin

� end if

� if (m ≥ 2) //Update the number of desired particles

	 Nq = n · W2
k

(Wk)2
· (m − 1)

2ε

{

1 − 2
9(m−1)

+
√

2
9(m−1)

z1−δ

}3

� end if

� (d) KLD bound checking:

� if (n ≥ Nq or n ≥ Nmax)

	 break

� else

	 Update number n = n + 1, and repeat step (2)

� end if
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Table 2 (Continued)

� (3) Normalizing:

� for j = 1, . . . , n

� w
j
k

= w
j
k
/Wk

� end for

� (4) Calculating Estimation:

� x̂ = E[xk |z1:k] =
n∑

j=1

w
j
k

× xj
k

� (5) Calculating the empirical covariance matrix Sk of {xj
k
,w

j
k
}n
j=1

� (6) Computing Dk such that DkDT
k

= Sk

� (7) Resampling:

� (a) Set threshold T < 1/n, s = 0

� (b) Select substantial particles:

� for j = 1 : n
	 if (w

j
k

> T )


 s = s + 1 //the number of substantial particles


�x s
k

= xj
k


 �ws
k

= w
j
k

	 end if

� end for

• end For

4.1 Time Evolution of Synchronization

With the parameters listed in Sect. 2, the transmitter can exhibit chaotic oscillation.
When the transmitted signal passes through an AWGN channel with SNR = 10 dB
and reaches the receiver constructed by the proposed adaptive RPF described in
Sect. 3 with error threshold ε = 0.03 and δ = 0.03, and maximum number of par-
ticles Nmax = 1000, the simulation results are plotted in Fig. 2.

It follows from Fig. 2 that the transmitter’s state can be estimated and tracked in
a very short settling time, indicating that synchronization can be obtained and main-
tained utilizing the proposed adaptive RPF. This is to say, the resampling from a
continuous approximation of the posterior density can avoid sample impoverishment
in PF-based synchronization of chaotic Colpitts circuits. Figure 3 shows particle dis-
tributions after 1000 time steps using the proposed adaptive RPF. It is found that the
particles disperse relatively evenly, and the distribution of particles can cover the true
state.

4.2 Synchronization Performance vs. SNR, Sampling Interval

It is well known that synchronization performance is very sensitive to noise in the tra-
ditional drive–response system. Moreover, in the digital-filter-based synchronization
approaches, it is inevitable to lose some information during the ADC conversion, thus
the sampling interval of the ADC affects the synchronization performance. In this
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Fig. 2 With the proposed adaptive RPF, error signals: (a) eC1 = VC1 − V̂C1 ; (b) eC2 = VC2 − V̂C2 ;

(c) eL = I − Î ; (d) the synchronization error E

Fig. 3 Particle distributions after 1000 time steps using the proposed adaptive RPF

section, we will study the effect of different SNRs and different sampling intervals
on the synchronization performance by observing the value of AAD. For comparison,
the PF with roughening scheme [21], the RPF with a fixed large number of samples,
and the adaptive RPF using the KLD-Sampling are also studied.

Figure 4 shows the simulation results of AAD vs. SNR. All the data here are ob-
tained through 500 Monte Carlo simulations. Note that even when the AAD has a
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Fig. 4 AAD vs. SNR

value of 0.05, from the time-domain waveform of the drive and response we can see
that synchronization performance is quite good. It is seen from Fig. 4 that compared
with the PF with roughening scheme [21] and the RPF with a fixed 1000 number of
particles, the proposed adaptive RPF using the revised KLD-Sampling shows a simi-
lar performance. And the performances of all these three schemes are better than that
of the adaptive RPF using the KLD-Sampling especially at high SNRs. It is because
that the KLD-Sampling ignores the quality of the match between the true (posterior)
and the proposed (prior) distribution and when the SNR is very high, the likelihood
function is too narrow and the quality of the match is lower. It can be also observed
from Fig. 4 that with the decrement of SNR the synchronization performance de-
grades at a rather slow rate. Thus it can be inferred that the proposed adaptive RPF is
effective when the AWGN distortion is considered.

The AAD vs. the ADC sampling interval is plotted in Fig. 5. In this simulation,
the SNR is assumed to be 20 dB. It shows again that the proposed adaptive RPF has
almost similar performance to those of the PF with roughening scheme [21] and the
RPF with a fixed 1000 number of particles, while the adaptive RPF using the KLD-
Sampling exhibits worse synchronization performance. It is seen from Fig. 5 that with
the decrease of the ADC sampling interval the synchronization performance improves
quickly and the performance of the adaptive scheme using the KLD-Sampling is close
to that of the proposed adaptive scheme. The reason can be that the shorter the ADC
sampling interval, the higher precision the discrete data sampled from the analog
signal.

From Figs. 4 and 5 one can conclude that the proposed adaptive RPF using the
revised KLD-Sampling shows similar performance to those of the existing PFs with
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Fig. 5 AAD vs. ADC sampling interval

fixed large sample set sizes, and all of them are better than the adaptive scheme using
the KLD-Sampling for this problem.

4.3 Number of Particles Used vs. SNR, Sampling Interval

In this section, the number of particles used will be studied when the adaptive RPF is
employed as the receiver.

Figure 6 shows the sample set sizes during the estimation process using the pro-
posed adaptive RPF for this problem in SNR = 10 dB. It is found that when the
chaotic state is highly uncertain, such as at the beginning of a filtering, a large num-
ber of particles are desired to accurately represent its objective; while only a small
number of particles suffice to accurately track its state in case of small uncertainties.
The corresponding computational time in Matlab 7.7.0 on a Core 2 Duo 3.16-GHz
PC with 4 GB RAM is shown in Table 3. Upon the inspection of Table 3, the pro-
posed adaptive RPF is much faster than the existing PFs with fixed large number of
particles. It is because that the proposed filter adaptively adjusts the number of par-
ticles used and propagates less number of particles, which consequently reduces the
computational time. Obviously, compared with the existing PFs with a fixed large
number of particles, the proposed adaptive RPF is much more efficient.

For different SNRs, the numbers of particles used in both of the adaptive filters
are shown in Table 4. It is found that the proposed adaptive RPF using the revised
KLD-Sampling requires more number of particles than the adaptive scheme using the
KLD-Sampling. It is because that the proposed scheme considers the quality of the
match between the true and proposed distribution, which is one of the main elements
determining the accuracy of the filter, and hence the number of particles required.
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Fig. 6 Time evolution of number of particles used

Table 3 Computational time

Filters Computational time (s)

The PF with roughening scheme [21] 84.8

The RPF 88.3

The proposed adaptive RPF using the revised KLD-Sampling 35.6

Table 4 The average number of particles used vs. SNR

Filters SNR (dB)

0 5 10 15 20 25

The adaptive RPF using the
KLD-Sampling

359 221 142 95 80 69

The proposed adaptive RPF using the
revised KLD-Sampling

746 529 353 247 196 171

However, compared with the PF with roughening scheme [21] and the RPF with fixed
1000 number of particles during the entire state estimation process, the proposed
adaptive RPF propagates less number of particles. We can also find that in both of the
adaptive schemes, the average number of particles used decreases with the increase
of the SNR. The reason can be that the SNR is smaller; that is, the channel noise is
rather bigger and the density has higher uncertainties, thus larger number of particles
is required.

The corresponding numbers of particles used vs. ADC sampling interval for this
problem in SNR = 20 dB are shown in Table 5. One can observe again that the num-
ber of particles used in the proposed adaptive scheme is more than that in the adap-
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Table 5 The average number of particles used vs. ADC sampling interval

Filters Sampling interval (µs)

0.1 0.2 0.5 1 2 5

The adaptive RPF using the
KLD-Sampling

65 67 71 80 85 117

The proposed adaptive RPF using the
revised KLD-Sampling

154 158 174 196 235 328

tive scheme using the KLD-Sampling. And the proposed adaptive RPF propagates
less number of particles than the existing PFs with fixed 1000 number of particles.
It is seen from Table 5 that the average number of particles used increases with the
increase of the ADC sampling interval. The reason can be that the ADC sampling
interval is shorter, namely the PF state sampling interval is shorter and the particles
coming from the importance function are more precise, thus the number of bins with
support is correspondingly smaller and the bound given by the adaptive scheme for
the number of particles is lower.

From the simulation results above it can be found that for chaos synchronization of
Colpitts circuits in an AWGN channel, the proposed adaptive RPF, which utilizes the
revised KLD-Sampling to adaptively select the number of particles used, can show
similar performance to those of the existing PFs with fixed large number of particles
but propagates less number of particles and thus is much more efficient.

5 Conclusion

In this paper we proposed an adaptive RPF utilizing the revised KLD-Sampling for
synchronization of chaotic Colpitts circuits combating AWGN channel distortion.
This proposed adaptive RPF makes the most of the inherent characteristic of chaotic
trajectories, which are generally confined in a bounded state space with the fixed
system parameters. Simulation results demonstrate that for the chaotic Colpitts os-
cillator, the proposed adaptive RPF avoids the sample impoverishment problem and
is more efficient than the existing schemes with fixed large sample set sizes while
keeping the performance approximately the same. The proposed adaptive RPF-based
synchronization scheme has tremendous potential for developing practical chaotic
communication systems using Colpitts circuits. In future work, we will demonstrate
experimentally the synchronization of chaotic Colpitts circuits utilizing this proposed
adaptive scheme and develop practical chaotic communication systems using the
chaotic Colpitts circuits.
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